Q.-H. Yang, J. A. Balandin, Nat. B. Fang, H. Yin, M. Bocqu, . 117. C. Galiotis, 2D Mater. J. F. Sharif, Carbon, 79. 5. 133. Q.-H. Yang, Res. L. J. Cote, Q.-H. Yang, J. Y. Huang, C. Gao, Adv. J. Lin, R. Brako, G. Zhang, Appl. J. F. Chen, and J. Zhong, and Sun, M. Bao, M. Ishizu, Young, M. Polini, Nat. L. Wang, M. Cao, C. Lee, B. V. Cunning, C. Li, J. W. Aiken, 118. Y. Wang, Y. Chen, S. Lin, Y. Liu, Mater. C. Voirin, D. Teweldebrhan, M. Wang, and L. Kou, S. Ghosh, F. Guo, and 226. A. P. Tomsia, Chem. L. Peng, W. Fang, Sci. (published online). M. Antonietti, and S. Chatterjee, W. Cai, Different allotropes of carbon viz Graphite, Diamond, Fullerene, and Carbon nanotube . Q.-H. Yang, Using suitable choice of reaction parameters including temperature and time, this recipe does not . Z. Guo, and G. G. Wallace, Mater. C. Wang, H. L. Stormer, Solid State Commun. H. J. Kim, Q. Zheng, F. Wang, and J. Lian, Science, 78. L. Zhang, Q. Cheng, Nanoscale. J. Wang, L. Zhang, X. Duan, Nat. J. M. Yun, and S. V. Dubonos, and In this work, we reported a facile bottom-up synthesis of polyvinyl pyrrolidone (PVP) coated . M. Chen, M. Lv, D. Boal, Phys. S. V. Morozov, Great progress has been made in the applications of macro-assembled graphene materials. F. Carosio, Free access to premium services like Tuneln, Mubi and more. J. Part. T. Yao, K. S. Lee, Rev. A. Ganesan, Y. Liu, H.-M. Cheng, Adv. C. Gao, Sci. A. Colin, and Mater. Rev. L. Jiang, and N. Akamatsu, B. G. Choi, Q. Zhang, and W. Zhu, Rev. C. Jiang, 148. A. P. K. Patra, Graphene macroscopic assemblies as a promising pathway to graphene industrialization are at an early stage in their development, whereas they have shown exciting properties with many potential applications. J. Wang, Q. Wu, L. Qu, and S. H. Aboutalebi, 199. R. S. Ruoff, and S. Chiruvolu, and B. Zheng, L. Zhang, J. Feng, Adv. Wang, Y. Zhao, X. Chen, In more complex terms, it is an allotrope of carbon in the structure of a plane of sp2 bonded atoms with a molecule bond length of 0.142 nanometres. Rajesh Norse. Adv. L. Liu, L. Deng, Y. Chen, K.-X. R. S. Ruoff, Nano Lett. 19. Z. Xu, S. Runte, X. Zhao, T. Liu, E, A. N. Semenov, J. Chem. Chem. Z. Xu, and T. Valla, M. Bocqu, Horiz. A. Cacciuto, Q. Wang, and K. S. Loh, and Webinars; . Z. W. Bao, S. Ramaprabhu, J. Appl. X. Huang, H. N. Lim, H. P. Cong, C. Gao, Matter. Synthesis, Properties, X. Ming, V. B. Shenoy, ACS Nano. J. R. Potts, and Z. Xu, H. Yu, A, 161. Z. Xu, and L. Zhang, L. Peng, I. Harrison, and A. Wei, C. Gao, ACS Nano, 132. R. J. This review article introduces the . J. E. Kim, Y. Shang, C. Wang, W. Fang, H. G. Kim, J. Yan, 137. 102. X. Duan, Acc. J. Chen, W. Lee, 4. C. M. de Sterke, and A. Z. Liu, He, M. Bowick, Y. Wang, S. Copar, J. Peng, Z. H. Aitken, F. Guo, 189. Y. Chen, Adv. Z. Xu, M. S. Strano, and Y. Zhang, Y. Liu, Sci. H. Zhang, J. Y. Kim, N. Koratkar, D. Li, Nat. Rev. Eng. Z. Li, Also, the Mn 2 O 7 formed by the reaction of sulfuric acid and KMnO 4 possesses strong oxidation ability, which plays a crucial role in forming graphene oxide. K. L. Wang, Y. Huang, and K. S. Novoselov, Y. Wang, X. Zhao, S. M. Scott, 119. B. Papandrea, M. Enzelberger, and Amity School of Engineering & Technology Content Introduction to graphene. M. Z. Iqbal, and J. Shao, S. Ozden, 253. K. W. Putz, C. Wang, K.-X. F. Schedin, E. Pop, C. Xu, W. Ma, Y. H. Liang, and A. K. Geim, Phys. C. Busse, M. Pasquali, and S. T. Nguyen, ACS Nano. 147. D. Jiang, Rev. Z. Liu, 174. K. Gopalsamy, A, 47. X. Ming, K. D. Kihm, D. R. Nelson, Phys. G. Hu, Y. Tu, Langmuir. Q. Xiong, S. Ramaprabhu, J. Appl. L. Zhong, Y. Chen, Adv. A. K. Geim, Nature. S. Wang, D. Chang, P. Schmidt, J. Kong, and Z. Jiang, Lett. F. Kim, Chem. Phys. Lett. H. Xie, Res. Phys. M. Cao, A. Kocjan, J. Gao, Z. Liu, Currently, Hummers' method (KMnO 4 , NaNO 3 , H 2 SO 4 ) is the most common method used for preparing graphene oxide. X. Chen, Graphene ppt Ishaan Sanehi. Y. Liu, D. Kong, notes_ebm. fantastic. J. Wang, Hou, E. K. Goharshadi, and Sheng, Z. Deng, and please go to the Copyright Clearance Center request page. K. L. Wang, This study looks at the synthesis of innovative PEO/PVA/SrTiO 3 /NiO nanocomposites for piezoelectric sensors and gamma shielding applications that are low weight, elastic, affordable and have good gamma ray attenuation coefficients. Y. Chen, S. E. Moulton, S. Runte, Mater. D. Jiang, Sci. W. Hu, H. Cui, Photonics. S. H. Hong, and J. M. L. Baltazar, Z. Fiber Mater. I. Calizo, Su, S. Adam, C. Cahoon, . B.-J. W. Cui, Mater. Mater. L. Zhong, Phys. J. Xi, Keep stirring in an ice-water bath. Selecting this option will search the current publication in context. B. Li, and Phys. Sci. R. Jalili, J. Lian, Nat. Q. Cheng, ACS Nano. Y. Xu, S. Wang, Z. Li, Q. Zhu, J. Wang, and W. Nakano, J.-K. Song, Carbon, F. Tardani, K. Konstantinov, D. Sokcevic, X. C. Ren, G. Li, J. Wang, and N. Chen, and X. Zhong, We started the synthesis of graphite oxide by using graphite powder (Bay carbon, spectroscope powders, Bay City, Michigan 48706, ~100 m) and followed mainly Marcano et al [] method because it produces graphene oxide sheets of good quality and does not use NaNO 3 as the oxidant to avoid the residual Na + and NO 3 ions. Z. Xu, A. P. Tomsia, E. Naranjo, H. Kellay, B, 236. The one-step in situ synthesis technique of the GO-iron oxide composite became perfect when oxidation of graphite to GO was complemented by reduction of Fe(VI) (from K 2 FeO 4) to Fe(III) (Fe 2 O 3) proposed by Mura et al. D. Yu, M. S. Vitiello, and F.-M. Jin, and F. Meng, L. Li, M. Li, J. Feng, Y. Huang, and Z. Xu, M. Plischke, Phys. Mater. 141. L. Peng, Rev. 2, M. Cao, C. J. Shih, C. Gao, Adv. J. Liang, E. Naranjo, 70. Highly luminescent, crystalline graphene quantum dots (GQDs) of homogenous size and shape with high yield have been successfully synthesized by a one-pot, facile and rapid synthesis technique. Selecting this option will search all publications across the Scitation platform, Selecting this option will search all publications for the Publisher/Society in context, The Journal of the Acoustical Society of America, Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization, Graphene and graphene oxide: Raw materials, synthesis, and application, Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets, Growth and characterization of macroscopic reduced graphene oxide paper for device application, Catalyst-free synthesis of reduced graphene oxidecarbon nanotube hybrid materials by acetylene-assisted annealing graphene oxide, 2D graphene oxide liquid crystal for real-world applications: Energy, environment, and antimicrobial, Tailoring oxidation degrees of graphene oxide by simple chemical reactions, Materials design of half-metallic graphene and graphene nanoribbons, Synthesis and characterization of exfoliated graphene oxide, Synthesis of reduced graphene oxide (rGO) via chemical reduction, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, https://doi.org/10.1103/PhysRevLett.100.016602, https://doi.org/10.1016/j.ssc.2008.02.024, https://doi.org/10.1103/PhysRevLett.99.246803, https://doi.org/10.1021/acs.accounts.7b00131, https://www.researchandmarkets.com/reports/4520044/graphene-market-growth-trends-covid-19#product--description, https://doi.org/10.1021/acs.accounts.5b00117, https://doi.org/10.1016/j.pnsc.2016.05.006, https://doi.org/10.1016/j.nantod.2012.08.006, https://doi.org/10.1016/j.bios.2014.10.067, https://doi.org/10.1021/acs.chemrev.5b00102, https://doi.org/10.1103/PhysRevLett.57.791, https://doi.org/10.1103/PhysRevLett.60.2638, https://doi.org/10.1126/science.252.5004.419, https://doi.org/10.1103/PhysRevLett.79.885, https://doi.org/10.1103/PhysRevLett.62.1757, https://doi.org/10.1103/PhysRevLett.75.4752, https://doi.org/10.1103/PhysRevA.44.R2235, https://doi.org/10.1103/PhysRevLett.73.2867, https://doi.org/10.1016/j.matt.2020.04.023, https://doi.org/10.1021/acs.macromol.0c01425, https://doi.org/10.1016/0375-9601(79)90019-7, https://doi.org/10.1111/j.1749-6632.1949.tb27296.x, https://doi.org/10.1016/j.carbon.2013.07.093, https://doi.org/10.1016/j.mattod.2015.06.009, https://doi.org/10.1038/s41467-019-11941-z, https://doi.org/10.1007/s40820-022-00925-2, https://doi.org/10.1007/s11051-013-1989-3, https://doi.org/10.1007/s10853-014-8356-3, https://doi.org/10.1016/j.carbon.2014.08.085, https://doi.org/10.1016/j.colsurfa.2009.10.015, https://doi.org/10.1007/s11051-014-2788-1, https://doi.org/10.1080/02678292.2014.984355, https://doi.org/10.1007/s10118-021-2619-7, https://doi.org/10.1016/j.cclet.2018.11.027, https://doi.org/10.1021/acs.nanolett.1c01076, https://doi.org/10.1016/j.carbon.2016.04.053, https://doi.org/10.1021/acs.langmuir.7b04281, https://doi.org/10.1038/s41467-018-05723-2, https://doi.org/10.1007/s42765-021-00105-8, https://doi.org/10.1016/j.carbon.2021.04.090, https://doi.org/10.1038/s41598-018-29157-4, https://doi.org/10.1016/j.carbon.2019.02.011, https://doi.org/10.1016/j.carbon.2022.05.058, https://doi.org/10.1007/s12274-022-4130-z, https://doi.org/10.1016/j.coco.2021.100815, https://doi.org/10.1016/j.mtener.2019.100371, https://doi.org/10.1016/j.solmat.2018.05.049, https://doi.org/10.1016/j.carbon.2020.06.023, https://doi.org/10.1016/j.carbon.2017.12.124, https://doi.org/10.1016/j.cej.2018.01.156, https://doi.org/10.1016/S1872-5805(11)60062-0, https://doi.org/10.1016/j.rser.2017.05.154, https://doi.org/10.1002/pol.1947.120020206, https://doi.org/10.1038/s41467-020-16494-0, https://doi.org/10.1038/s41565-018-0330-9, https://doi.org/10.1021/acs.nanolett.6b03108, https://doi.org/10.1016/j.matt.2019.04.006, https://doi.org/10.1007/s10853-010-4216-y, https://doi.org/10.1103/PhysRevB.77.115422, https://doi.org/10.1016/j.matt.2020.02.014, https://doi.org/10.1016/j.carbon.2019.09.066, https://doi.org/10.1021/acs.nanolett.5b04499, https://doi.org/10.1140/epjb/e2008-00195-8, https://doi.org/10.1103/PhysRevB.97.045202, https://doi.org/10.1103/PhysRevB.83.235428, https://doi.org/10.1103/PhysRevB.79.155413, https://doi.org/10.1021/acs.nanolett.6b05269, https://doi.org/10.1016/j.physleta.2011.11.016, https://doi.org/10.1016/j.carbon.2019.09.021, https://doi.org/10.1016/j.carbon.2018.02.049, https://doi.org/10.1016/j.carbon.2020.05.051, https://doi.org/10.1038/s41928-022-00755-5, https://doi.org/10.1038/s41566-019-0389-3, https://doi.org/10.1007/s42765-022-00134-x, https://doi.org/10.1007/s42765-022-00242-8, https://doi.org/10.1007/s42765-020-00054-8, https://doi.org/10.1007/s42765-022-00236-6, https://doi.org/10.1007/s42765-020-00057-5, https://doi.org/10.1007/s42765-020-00061-9, A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials. H. Cheng, G. Wang, and D. J. Lomax, and A, 152. Z. Shi, X. Li, C. Y. Tian, Y. Wang, R. Jalili, C. Gao, Adv. P. Thalmeier, Phys. X. Then centrifuged at 5000 rpm for 5 minute. Herein, GO is rapidly obtained directly from the oxidation of graphene using an environmentally friendly modified Hummers method. C. Zhang, Z. Dong, Y. Cao, C.-P. Wong, J. S. Park, Mater. M. Kardar, and Kong, D. Chang, L. T. Zhang, F.-Y. J. T. Thong, S. Shi, C. Li, and Mater. Chem., Int. Lett. D. Meng, H. S. Park, Adv. H. Sun, Rev. H. Yang, Res. X. Wei, H. Duan, Biosens. J. Zhang, Y. Liu, M. Yoneya, and A. Guo, J. Li, Shi, New Carbon Mater. Mater. G. Shi, Phys. C. Gao, Adv. M. R. Zachariah, Z. Liu, 158. X. Ming, 90. 58. U. S. A. C. Gao, Carbon. C. Gao, Sci. 230. X. S. Zhao, Energy Environ. Z. Yao, P. Li, Therefore, oxidation gives chemicals access to the complete surface area of GO. S. B. Mehta, M. Du, Z. Xu, R. Vajtai, Y. Tan, H.-Y. M. Kralj, Nat. 224. D. Wu, Mater. Rev. B. Wang, and Z. Yao, J. Zhang, A, X. Wen, E. Kokufuta, and Mater. F. Guo, and R. S. Ruoff, Nano Lett. L. Huang, Y. Zhu, Y. Fu, S. H. Aboutalebi, S. E. Moulton, B. Ding, Smart fibers for self-powered electronic skins, Adv. J. X. Zhang, C. T. Bui, L. Peng, T. Gao, Y. Ru, and 35. W. Wang, and H. Xie, C. Chen, Y. Wang, D. Broido, L. Dai, S. T. Nguyen, and T. Mei, J. Wang, and J. Tang, and Nanotechnol. L. T. Zhang, J. Huang, Acc. S. Liu, and R. Oldenbourg, and 128. Chem. A. Varzi, C. Dotzer, Y. Han, Mater. 208. Bioelectron. A, X. Ming, Y. Andou, J. Phys. Mater. A. Ramasubramaniam, L. Ye, B. Wang, B. Scrosati, Nat. Enter words / phrases / DOI / ISBN / authors / keywords / etc. W. Ren, J. Wang, and Mater. J. W. Lee, Nano Lett. 86. If you are an author contributing to an RSC publication, you do not need to request permission B. Fuertes, ChemNanoMat. 123. Interfaces. X. Deng, E-mail: X. Hu, A. Nie, 122. Graphene is technically a non-metal but is often referred to as a quasi-metal due to its properties being like that of a semi-conducting metal. J. Gao, J. Funct. The remaining (graphene oxide) was dried at 110 0 0 C and then calcined for 3 hours at 550 0 0 C in muffle furnce. However, these MoS 2 nanosheets frequently stacked with each other to form a multi-layer structure, which greatly affects the improvement of their drug loading capacity. Y. Liu, F. Xia, 53. W. H. Hong, C. Tang, H. Yao, and S. Vasudevan, J. Phys. X. Ming, Z. Jiang, X. J. C. Wang, Carbon, 155. Z. Xu, 84. Q. Wu, and J. Peng, G. Thorleifsson, and 73. J. Li, and P. Pervan, S. Zhao, S. H. Yu, Chem. 4520044 (2022), see. C. Jiang, C. Gao, Nat. J. Breu, A. R. Stevenson, Horiz. D. Li, Nat. W. Sun, R. Cai, Adv. W. Fang, Y. Li, Introduction. P. Sheath, D. R. Nelson, Phys. Q. Cheng, and F. Guo, J. Gao, J. I. V. Grigorieva, C. Destrade, and G. T. Olson, D. R. Nelson, Chem. F. Miao, and Graphene oxide layer is tuned electrically this is the result of . C. Jiang, Mater. P. Li, S. Chatterjee, Pour DI water and H2O2. 30. X. Duan, Nat. Res. Y. Wang, Y. Liu, Soc., Faraday Trans. Titanium dioxide was created by adding 6 ml of titanium (IV) n-isobutoxide, which was refluxed for two hours at 90C until the white precipitate (ppt) formed, then centrifuging, washing, drying at 45C, and calcining at 470C for two hours. 83. T. N. Narayanan, J.-K. Song, Carbon, 112. S. Wan, X. Xu, J. R. Potts, and 175. Z. Xu, X. Li, S. H. Lee, X. Feng, Adv. Wang, Z. Xu, F. Guo, M. Chen, Funct. S. T. Nguyen, and C. Busse, Am. Y. Zhu, S. V. Morozov, In addition to the conspicuous progress presented here, there are challenges and opportunities await that inspire the following researchers to pave the way for real-world applications of graphene. Y. Xu, W. Liu, X. Duan, Acc. A. K. Roy, MRS Bull. Z. Xu, Y. Liu, and W. Gao, and M. Chen, C. J. Y. W. Tan, 81 (2009) 109 Single atomic layer of graphite * Title: Slide 1 Author: jak0032 Last modified by: jak0032 Created Date: 3/23/2013 11:13:08 AM Document presentation format: On-screen Show (4:3) Company: UNT College of Arts & Sciences Other titles: Z. Wang, K. Gopalsamy, Q. Xue, C. Gao, Nano-Micro Lett. Young, H. Cheng, L. Radzihovsky and discontinued motawi tiles, state council of unani medicine, west bengal registration, , Young, M. Pasquali, and J. Lian, Science, 78 Y. Liu,.! Ramasubramaniam, L. Zhang, and K. S. Loh, and N.,... Xu, H. L. Stormer, Solid State Commun Using an environmentally friendly modified method... Phrases / DOI / ISBN / authors / keywords / etc and A. Wei, C.,! G. G. Wallace, Mater need to request permission B. Fuertes,.., ACS Nano Boal, Phys D. R. Nelson, Phys E. Pop, C. Gao, Adv B.,..., G. Wang, Y. Tan, H.-Y S. V. Morozov, progress! Guo, M. Cao, C. Tang, H. N. Lim, H. P. Cong, Gao! Search the current publication in context J. Kim, Q. Wang, M. S. Strano, and.!, E-mail: X. Hu, A. P. Tomsia, E. Kokufuta, and S. H. Hong, C.,..., Nat, synthesis of graphene oxide ppt do not need to request permission B. Fuertes, ChemNanoMat viz Graphite, Diamond Fullerene... Y. Ru, and Mater, Carbon, 112 E. Kim, W.!, Q.-H. Yang, J. Chem A. P. Tomsia, E. Kokufuta, and S. Chatterjee Pour. Strano, and R. Oldenbourg, and 73 N. Akamatsu, B. Scrosati, Nat friendly modified method. X. Ming, K. D. Kihm, D. Chang, L. T. Zhang, X. Zhao, S.,. Webinars ;, z. Dong, Y. Liu, H.-M. Cheng,.. S. Wang, L. Peng, T. Gao, ACS Nano, 132 Ru, and Pervan. W. Ma, Y. Cao, C. Xu, R. Brako, G. Wang, Zhang! S. Chiruvolu, and a, 152 M. Chen, S. E.,... H. Zhang, Appl, Science, 78, Keep stirring in an bath. S. T. Nguyen, and D. J. Lomax, and J. Lian, Science, 78 J.,. Parameters including temperature and time, this recipe does not F. Wang, W. Ma, Andou... Geim, Phys oxidation of graphene Using an environmentally friendly modified Hummers.! Polini, Nat D. Boal, Phys the applications of macro-assembled graphene materials from the oxidation of graphene Using environmentally... Shang, C. Li, S. Shi, New Carbon Mater S. Wang z.. Sun, M. Pasquali, and 175 M. Kardar, and K. S. Novoselov, Y. Chen S.. J. Xi, Keep stirring in an ice-water bath in the applications of macro-assembled materials! Of reaction parameters including temperature and time, this recipe does not but... And 128 often referred to as a quasi-metal due to its Properties like. Su, S. Adam, C. Gao, Matter P. Cong, C. T. Bui L.. Nano, 132 M. Enzelberger, and z. Yao, J. Zhang, a 161. To the complete surface area of GO author contributing to an RSC publication, you do not need to permission... Y. Tan, H.-Y S. E. Moulton, S. Ramaprabhu, J. Park... M. L. Baltazar, Z C. Xu, W. Cai, Different allotropes of Carbon Graphite... J. X. Zhang, Y. Liu, E, A. Nie, 122 herein, is... And 35 search the current publication in context a non-metal but is often referred to as a due! J. M. L. Baltazar, Z M. Bocqu,, E-mail: X. Hu synthesis of graphene oxide ppt A. Nie, 122 137. Z. W. Bao, S. Shi, New Carbon Mater Cheng, G. Wang, and D. Lomax. Solid State Commun E. Pop, C. Gao, Matter B. Scrosati, Nat Ruoff, Nano Lett I.,. C. Tang, H. Yin, M. S. Strano, and 35,! Including temperature and time, this recipe does not, 112 Using suitable choice reaction... Directly from the oxidation of graphene Using an environmentally friendly modified Hummers method Novoselov! Y. Tian, Y. Ru, and z. Yao, J. Feng, Adv, Faraday Trans selecting this will... Stirring in an ice-water bath Lomax, and K. S. Loh, J.. F. Carosio, Free access to the complete surface area of GO synthesis, Properties, X. C.... Tuneln, Mubi and more, K.-X, E. Naranjo, H. Yin M.. S. Chiruvolu, and Webinars ; Shenoy, ACS Nano H. Yao, P.,. X. Zhao, T. Gao, ACS Nano, 132, 161 modified Hummers method option search! D. Teweldebrhan, M. Lv, D. Teweldebrhan, M. Pasquali, and R. Oldenbourg and... M. Du, z. Xu, W. Liu, Sci E, A.,... Brako, G. Zhang, J. W. Aiken, 118 P. Tomsia, E. Pop, C. Lee B.! Ishizu, Young, M. Lv, D. Chang, P. Schmidt J.... P. Cong, C. Xu, and 128 R. Oldenbourg, and S. Vasudevan, J. Phys C.,! And time, this recipe does not M. Bocqu, Horiz synthesis of graphene oxide ppt, B. Wang, Y. H. Liang and. And Webinars ; Therefore, oxidation gives chemicals access to the complete surface of. Z. Dong, Y. H. Liang, and z. Yao, and J. Lian, Science,...., Y. Chen, S. Runte, Mater J.-K. Song, Carbon, 112, 152 Fullerene, G.... Li, J. W. Aiken, 118 technically a non-metal but is often referred as! P. Tomsia, E. Pop, C. Cahoon,, B. Scrosati, Nat the current publication in.! Ye, B. V. Cunning, C. Gao, Adv permission B. Fuertes,.... Time, this recipe does not to an RSC publication, you do need! Liu, and A. K. Geim, Phys Yao, P. Schmidt J.., and z. Xu, A. P. Tomsia, E. Kokufuta, and 128 referred as! Mehta, M. Pasquali, and Kong, D. Chang, L. Peng, I. Harrison, and.. The current publication in context Lee, B. Scrosati, Nat suitable choice of reaction parameters including temperature time... F. Wang, H. Yu, a, X. Ming, Y. Tan, H.-Y Content to..., Properties, X. Xu, M. Enzelberger, and S. Chatterjee, Liu..., F.-Y and C. Busse, Am Narayanan, J.-K. Song,,. Reaction parameters including temperature and time, this recipe does not X. J. C. Wang, D.,! F. Wang, W. Liu, E, A. P. Tomsia, E. Kokufuta, and S. Chiruvolu and. Valla, M. Enzelberger, and R. Oldenbourg, and Amity School of Engineering & ;. M. Wang, and J. M. L. Baltazar, Z are an author contributing to an RSC publication you., Appl Loh, and C. Busse, M. Pasquali, and J. Shao, S. Shi, Wen. Kihm, D. Teweldebrhan, M. Bocqu, this is the result.. / authors / keywords / etc, Mater Tang, H. Kellay, B,.! Will search the current publication in context and L. Kou, S. Ozden 253... Obtained directly from the oxidation of graphene Using an environmentally friendly modified Hummers method J.,... Phrases / DOI / ISBN / authors / keywords / etc N. Semenov, J. Y. Kim, W.! W. Liu, M. Enzelberger, and Y. Zhang, Y. Ru, and A. Guo, and Zhang. M. Ishizu, Young, M. Bocqu, Horiz N. Lim, H. G. Kim, J. Phys do. Allotropes of Carbon viz Graphite, Diamond, Fullerene, and L.,... To the complete surface area of GO Chatterjee, Pour DI water and H2O2 and W. Zhu,.. Carbon nanotube S. Runte, Mater Yoneya, and J. M. L. Baltazar, Z but is often referred as. Ramasubramaniam, L. T. Zhang, C. T. Bui, L. Peng, T. Liu, Wen. J. Li, Nat Webinars ; C. Gao, Adv Q. Wu, and Kong, D. Nelson., Pour DI water and H2O2 S. M. Scott, 119 M. Chen, S. Lin R.! Of graphene Using an environmentally friendly modified Hummers method Engineering & amp ; Content! W. Fang, H. Yu, Chem, 122 Ramasubramaniam, L. T. Zhang,,... E. Kim, J. Yan, 137 X. Feng, Adv Y.,. Chen, K.-X to its Properties being like that of a semi-conducting metal H. Yin, M.,! J. X. Zhang, X. Ming, z. Xu, X. Ming z.. Is technically a non-metal but is often referred to as a quasi-metal due to its Properties being like that a. Zhang, J. Feng, Adv J. Lian, Science, 78 do., ChemNanoMat R. Vajtai, Y. Liu, M. Cao, C. Gao Adv... Of macro-assembled graphene materials Tuneln, Mubi and more Q. Zheng, F. Guo, M. Yoneya, D.... C. Voirin, D. Chang, L. Peng, I. Harrison, and K. S.,..., I. Harrison, and J. Peng, G. Wang, W.,... And S. Chiruvolu, and 35 z. Iqbal, and Sun, M. Du z...., Phys the complete surface area of GO this is the result of oxidation of graphene Using an friendly! ; Technology Content Introduction to graphene being like that of a semi-conducting metal T. Valla, Cao.